- ¢ CENGAGE
% learning

Microcontrollers

FROM ASSEMBLY LANGUAGE
TO C USING THE PIC24 FAMILY

MICROCONTROLLERS,
SECOND EDITION:

FRDM[ASSEMBLY
LANGUAGE TO C USsING
THE PIC24 FAMILY

BRYAN A. JONES
RoBERT B. REESE

J.W. BRUCE

Cengage Learning PTR

»~ e CENGAGE
% Learning

Australia, Brazil, Japan, Korea, Mexico, Singapore, Spain, United Kingdom, United States

~ e CENGAGE
% learning

Professional « Technical « Reference

Microcontrollers, Second Edition:
From Assembly Language to C
Using the PIC24 Family

Bryan A. Jones, Robert B. Reese,
and J.W. Bruce

Publisher and General Manager,
Cengage Learning PTR:
Stacy L. Hiquet

Associate Director of Marketing:
Sarah Panella

Manager of Editorial Services:
Heather Talbot

Senior Product Manager:
Mitzi Koontz

Project and Copy Editor:
Kezia Endsley

Interior Layout:
Shawn Morningstar

Cover Designer:
Luke Fletcher

Proofreader:
Kelly Talbot Editing Services

Indexer:
Kelly Talbot Editing Services

Printed in the United States of America
1234567161514

© 2015 Cengage Learning PTR.

CENGAGE and CENGAGE LEARNING are registered trademarks of Cengage
Learning, Inc., within the United States and certain other jurisdictions.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored, or used in any form or by
any means graphic, electronic, or mechanical, including but not limited to
photocopying, recording, scanning, digitizing, taping, Web distribution,
information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706.

For permission to use material from this text or product,
submit all requests online at cengage.com/permissions.

Further permissions questions can be emailed to
permissionrequest@cengage.com.

All trademarks are the property of their respective owners. Noted figures
have been reprinted with permission of the copyright owner, Microchip
Technology Inc. All rights reserved. No further reprints or reproduction may
be made without Microchip Inc.’s prior written consent.

All images © Cengage Learning unless otherwise noted.

Library of Congress Control Number: 2014945697
ISBN-13: 978-1-305-07655-6

ISBN-10: 1-305-07655-9

elSBN-10: 1-305-07656-7

Cengage Learning PTR
20 Channel Center Street
Boston, MA 02210

USA

Cengage Learning is a leading provider of customized learning solutions with
office locations around the globe, including Singapore, the United Kingdom,
Australia, Mexico, Brazil, and Japan. Locate your local office at:
international.cengage.com/region.

Cengage Learning products are represented in Canada by Nelson Education, Ltd.
For your lifelong learning solutions, visit cengageptr.com.

Visit our corporate Web site at cengage.com.

www.cengage.com/permissions
www.international.cengage.com/region
www.cengageptr.com
www.cengage.com

RBR: To my wife (Donna) and sons (Bryan and Brandon)—thanks for
putting up with me.

BAJ: To my beloved wife and to my Lord; soli Deo gloria.

JWB: To all of my teachers. Thank you.

ACKNOWLEDGMENTS

The authors would like to thank the following individuals for their assistance in preparing this book:

= ECE 4723/6723 and ECE 3724 students for their patience during the development of
this text and the accompanying software libraries. That includes ECE 3724 TAs Hejia Pan,
Ian Turnipseed, and Ryan Nazaretian for their assistance during this transition. Ryan also
served as an ECE 4723/6723 TA.

= To the members of the Microchip Academic Program team at Microchip Technology Inc.
for their support in using Microchip products in a higher-education environment.

ABOUT THE AUTHORS

BRYAN A. JONES received B.S.E.E. and M.S. degrees in electrical engineering from Rice University,
Houston, TX, in 1995 and 2002, respectively, and a Ph.D. in electrical engineering from Clemson
University, Clemson, SC, in 2005. From 1996 to 2000, he was a Hardware Design Engineer for
Compag, specializing in board layout for high-availability RAID controllers. Since 2005, he has
served in the Department of Electrical and Computer Engineering at Mississippi State University,
Mississippi State, where he is an Associate Professor. His research interests include literate pro-
gramming, engineering education, embedded systems, and visual guidance for micro air vehicles.

ROBERT B. REESE received a B.S. from Louisiana Tech University, Ruston, in 1979 and M.S. and
Ph.D. degrees from Texas A&M University, College Station, in 1982 and 1985, respectively, all in
electrical engineering. He served as a member of the technical staff of the Microelectronics and
Computer Technology Corporation (MCC), Austin, TX, from 1985 to 1988. Since 1988, he has
been with the Department of Electrical and Computer Engineering at Mississippi State University,
Mississippi State, where he is an Associate Professor. Courses that he teaches include
Microprocessors, VLSI systems, Digital System Design, and Senior Design. His research interests
include self-timed digital systems and computer architecture.

J.W. BRUCE received a B.S.E. from the University of Alabama in Huntsville in 1991, an M.S.E.E. from
the Georgia Institute of Technology in 1993, and a Ph.D. from the University of Nevada Las Vegas in
2000, all in electrical engineering. Dr. Bruce has served as a member of the technical staff at the Mevatec
Corporation, providing engineering support to the Marshall Space Flight Center Microgravity
Research Program. He also worked in the 3D Workstation Graphics Group at the Integraph
Corporation, designing the world’s first OpenGL graphics accelerator for the Windows operating
system. Since 2000, Dr. Bruce has served in the Department of Electrical and Computer
Engineering at Mississippi State University. Dr. Bruce has contributed to the research areas of data
converter architecture design and embedded systems design. He has published more than 35 tech-
nical publications, several book chapters, and one book.

This page intentionally left blank

CONTENTS

PART |

INtrodUuCtionot e XV

DiGITAL LoGic REVIEwW AND COMPUTER ARCHITECTURE FUNDAMENTALS .. .1

Chapter 1

Number System and Digital Logic Review 3
Learning Objectives 3
Using Binary Data ... i 4
Unsigned Number Conversion i, 7
Hex to Binary, Binaryto Hex. 7
Combinational Logic Functions 12
Combinational Building Blocks 19
The Multiplexer e e 19
The Adder. ... 20
The Incrementer. 21
The Shifter 22
Memory 22
Understanding Sequential Logic i 23
The Clock Signal. 24
The D Flip-Flop. . ..ot e e e 25
Sequential Building Blocks 27
The Register e 27
The Counter 28
The Shift Register. e 28
Encoding Character Dataot 30
SUMMAAIY ot e e 31
Review Problems 32

vii

viii

Table of Contents

Chapter 2 The Stored Program Machine 33
Learning Objectives 33
Problem Solving the Digital Way 34
Finite State Machine Design it 35
Finite State Machine Implementation 37
A Stored Program Machine 40
Instruction Set Design and Assembly Language 40
Hardware Designottt 44
Modern CompPULErsot e 48
SUMMAIY ottt e it e e e 48
Review Problems 48
PART Il
PIC24 pC AsSeEmMBLY LANGUAGE PROGRAMMINGououuunnnn. 51
Chapter 3 Introduction to the PIC24 Microcontroller Family 53
Learning Objectivesot e 53
Introduction to Microprocessors and Microcontrollers 54
The PIC24 Microcontroller Family i 55
Program Memory Organization 57
Data Memory Organization 58
Arrangement of Multibyte Values in Data Memory............... 60
Data Transfer Instructions and Addressing Modes 62
Register Direct Addressing, 62
File Register Addressingoiuiiiinii e 65
WREG—The Default Working Register 67
Immediate Addressing.t 69
Indirect Addressing e 70
Instruction Set Regularity i 72
Basic Arithmetic and Control Instructions 74
Three-Operand Addition/Subtraction. 74
Two-Operand Addition/Subtraction............................ 76
Increment, Decrement Instructions 77
Program Control: goto 77
A PIC24 Assembly Language Program ..., 79
C-to-PIC24 Assembly Language.o v e 80
16-Bit (Word) Operationst 88
The Clock and Instruction Execution, 91
SUMMAIY . ottt e e e e e e e e e e e e 92

Review Problems e 92

Chapter 4

Chapter 5

Table of Contents

Unsigned 8/16-Bit Arithmetic, Logical,

and Conditional Operations 95
Learning Objectives i 95
Bitwise Logical Operations, Bit Operations 96
Using the Status Register 100
Using Shift and Rotate Operations i, 102
Using Mixed 8-Bit/16-Bit Operations, Compound Operations 105
Working Register Usaget 108
LSB and MSB Operations.ouiiiii i 108
Conditional Execution Using Bit Tests ion.. 109
Unsigned Conditional Testsco i 111
Conditional Tests iNn C ot 111
Zero, Non-Zero Conditional Tests. i, 112
Bit eSS, . oot 115
Equality, Inequality Conditional Tests. 116
Conditional Tests for >=, >, <, and <= 116
Comparison and Unsigned Branch Instructions. 118
Complex Conditional Expressions, 123
LOOPING et e 126
SUMIMAIY . ottt et e e e e e e e e e 128
Review Problems 129
Extended Precision and Signed Data Operations 133
Learning Objectiveso 133
Extended Precision Operationso i, 134
32-Bit Assignment Operationsc..oiuiiiniinennn.. 134
32-Bit Bitwise Logical Operations., 136
32-Bit Addition/Subtraction 137
32-Bit Logical Shift Right/Shift Left Operations. 141
Zero, Non-Zero Conditional Tests.co i, 141
Equality, Inequality 144
Comparisons of >, >=, <, and <= on Unsigned 32-Bit Operands. . .. 145
64-Bit Operations. e e 146
Signed Number Representation i, 147
Signed Magnitude 147
One's Complement. 148
Two's Complement. e 149
Sign Extension 151
Two's Complement Overflow 152
Operationson Signed Datacoiiiin i 153
Shift Operationson SignedData, 155

Comparisons of >, >=, <, and <= on Signed Operands............ 157

iX

X

Table of Contents

Chapter 6

Chapter 7

Sign Extension for Mixed Precision 159
Branch Instruction Encodingt 161
SUMIMAIY . oot et e e 163
Review Problems 164
Pointers and Subroutines 167
Learning Objectives e 167
PIC24 Indirect Addressing Modes i 168

Register Indirect with Signed Constant Offset 170

What Instruction Forms Support Indirect Addressing?............ 170

Instruction Stalls Due to Data Dependencies. 171
Using Subroutines i e 172
The Stack and Call/Return, Push/Pop 174

The Data Memory Stack 175

Call/Return and the Data Memory Stack 178

Stack Overflow/Underflow 179
Implementing Subroutines in Assembly Language 179

Static versus Dynamic Parameter Allocation 180

Using Working Registers for Subroutine Parameters and Locals. ... 182

The Shadow Registers e e 186
C Pointers and Arraysu i 186

Implementation of C Pointer/Array Operations in Assembly....... 190

A Subroutine That Manipulates 32-BitData 193

G StriNgS .« v ettt e e 195

The repeat Instruction. i i 196
Stack Frames for Function Parameters and Local Variables 199
Program Space Visibility and Global Variable Initialization 203
SUMMAAIY . o i i 206
Review Problems 208
Advanced Assembly Language: Higher Math 213
Learning Objectives i 213
Multiplication e 214

64-Bit Multiplication 218
DIVISION e 220
Fixed-Point and Saturating Arithmetic........... 225

Decimal to x.y Binary Format 226

x.y Binary Format to Decimal Conversion 226

Signed Fixed-Point. i 227

0.n Fixed-Point Format and Saturating Operations 228

The dsPIC® Microcontroller Family io... 230

Table of Contents

Floating-Point Number Representation 230
IEEE 754 Floating-Point Encoding., 230
Floating-Point Operations. 233

BCD Arithmetico e 235

ASCll Data CONVErSION . ..ottt e e et 237
Binary to ASCII-Hex oo 237
Binary to ASClI-Decimal. i 239
ASCI-Hex to Binary e 240
ASCll-Decimal to Binary. 242

SUMIMAIY . o ot e e e e e e e e e e e 242

Review Problems 243

PART Il
PIC24 pC INTERFACING USING THE C LANGUAGE 245
Chapter 8 System Startup and Parallel Port1/0 247

Learning Objectives 247

High-Level Languages versus Assembly Language 248

C Compilation forthe PIC24 pC it 250
Special Function Registers and Bit References. 251
PIC24 Compiler Runtime Code, Variable Qualifiers/Attributes. 255
C Macros, Inline Functions. 256
Conditional Compilation....... i 256

PIC24 Startup Schematic 258
Startup Schematic: Power i 260
Startup Schematic: Reset. 261
Startup Schematic: PC Serial Communication Link 262
Startup Schematic: In-Circuit Serial Programming 262
Startup Schematic: Application Components 263

ledflash.c—The First C Program for PIC24 Startup 263
Clock Configuration. 263
Flashingthe LED ot e e 264
An Improved LED Flash Program 265

echo.c—Testing the Serial Link 267
asm_echo.s—Implementing Echo in Assembly 269

Datasheet Reading—A Critical Skill 270

Configuration Bits i 272

Clock Generationot e 273

Power-On Reset Behavior and Reset Sources 274

Watchdog Timer, Sleep, Idle, and Doze 276

The reset.c Test Programttt een 280

Xi

xii Table of Contents

Chapter 9

Parallel Port Operation i 284
Tristate Drivers 287
Schmitt Trigger Input. 288
Open-Drain OQutput e 288
Internal Weak Pull-Ups and Pull-Downs. 289
Digital versus Analog Inputs. 290
PIO Control Bits Summary. i 291
PIO Configuration Macros/Functions 291

LED/Switch 1/0 and State Machine Programming 293
State Machine I/O Programmingc. i, 295
Extended State in a More Complex LED/Switch 1/0O Problem 298

Interfacing toan LCD Module 302
33Vto5Vinterfacing. 303
LCD COmMMaANGS . .. oottt et e 304
LCD Code Example.t e 306

The PIC24E versus the PIC24F and PIC24H Families 310

SUMMIAIY ettt e e e e e 311

Review Problems 312

Interrupts and a First Look at Timers 317

Learning Objectives i 317

Interrupt Basicst e 318

PIC24 pCinterrupt Detailso 320
Vector Tableo 320
Interrupt Priorities. 322
L= o1 322
Interrupt Latency 323
ISROverheado 324

ISR FuNctions in C e 325
The Default Interrupt 325
An Example ISR . .. e 327

Change Notification Interrupts i 329
Wake from Sleep/Idle 330
Using a Change Notification Interrupt to Measure Interrupt

Latency 330

INTx External Interrupts and Remappable Pins 332
Switch Inputs and Change Notification/INTx Interrupts........... 336

Periodic Timer Interruptsottt e 336
Timer Macros and Support Functions. 339

Square Wave Generation i 341

Chapter 10

Table of Contents

Interrupt-Driven LED/Switch /O i 343
Input Sampling.o 343
Change Notification withaTimer 346

Filtering Noisy Inputs i e e 353

A Rotary Encoder Interface 355

AKeypad Interface 359

On Writing and Debugging ISRs i 365

SUMIMAIY . ottt et e e e e e e e 366

Review Problems 366

Asynchronous and Synchronous Serial /O 371

Learning Objectivest 371

/O Channel Basicst e 372

Synchronous, Asynchronous Serial I/O 374
Asynchronous Serial I/0 Using NRZ Encoding 375

The PIC24 UART ..ot e e e e et et et e 380
UARTx Transmit Operationt 383
UARTx Receive Operation. 384
Baud Rate Configuration i 384

Using the PIC24 UART with C e 386
<stdio.h> Library Functions. 389

Interrupt-Driven 1/0O with the PIC2Z4 UART 390
Interrupt-Driven UART Receive.t 390
Interrupt-Driven UART Transmit., 394

The RS-232 Standard i 399

The Serial Peripheral Interface (SPI) i, 401

SPI Example: The MCP41xxx Digital Potentiometer 408

SPI Example: PIC24 uC Master to DS1722 Thermometer 411

SPI Example: PIC24 uC Master to PIC24 uCSlave 414

The I2C BUS . oottt e e 419
I2C Physical Signaling 421
[12C Transactionsottt 423
Library Functions for 12C Transactions 424

12Conthe PIC24 PC . ..o e 427

12C Example: PIC24 uC Master to DS1631 Thermometer 432

12C Example: PIC24 uC Master to 24LC515 Serial EEPROM 436

Ping-Pong Buffering for Interrupt-Driven Streaming Data 441

SUMIMAIY .o ot e e e e e e e e 445

Review Problems e 445

xiii

Xiv

Table of Contents

Chapter 11

Chapter 12

Data Conversioncouiiiiinnnrnnnennnennns 449
Learning Objectives 449
Data Conversion Basicst 450
Sensors and TransdUCErSo uu ittt e 450
Analog-to-Digital Conversion ...t 453
Successive Approximation ADC. i 457
Sample and Hold Amplifiers. 459
The PIC24 Analog-to-Digital Converter ooo... 460
PIC24 ADC Configuration 463
PIC24 ADC Operation: Manual 469
PIC24 ADC Operation: Recapovuiiiii i 474
Digital-to-Analog Conversion 474
Flash DAGCS . ..o e 475
R-2R Resistor Ladder Flash DACot 475
External Digital-to-Analog Converter Examples 482
DAC Example: The Maxim548A i 483
SUMIMAIY .ot e e e e e e e 486
Review Problems 486
TiMersS ...ttt ettt e e e 489
Learning Objectivest e 489
Pulse Width Measurement i 490
Using a32-Bit Timer. e e 492
Pulse Width, Period Measurement Using Input Capture 496
The Input Capture Module 497
Pulse Width Measurement Using Input Capture................. 498
Using Cascade Mode for 32-Bit Precision Input Capture 504
Period Measurement Using Input Capture 504
Application: Using Capture Mode for an Infrared Decoder 507
The Output Compare Module 516
Square Wave Generation i 519
Pulse Width Modulation 520
A PWM EXample ... e 521
PWM Application: DC Motor Speed Control and Servo Control 523
DC Motor Speed Control. i 523
Hobby Servo Control 524
PWM Control of Multiple Servos 526
A PWIM DAC . . e 530
Time Keeping Using Timer1 and RTCC (PIC 24H/F Families) 532
The Real-Time Clock Calendar Module 534
SUMMAIY . oot e e e e e e e e 538

Review Problems e 538

Chapter 13

Chapter 14

Table of Contents

Advanced Hardware Topicscciiivinnnnnn. 541
Learning Objectives 541
Direct Memory ACCESSot 542
Using the PIC24 uyCasanl2CSlavet 549
Bus Arbitration forthe I2CBus i 553
Reverse String Revisited 556
The Controller Area Network (CAN) 558
The PIC24 ECAN™ Module e ee 562
Usingan ECANRXFIFO. e 570
Using an Extended Data Frame 571
Run-Time Self-Programming i 572
A Sample Flash Application. i 576
SUMMAIY . o it et e e e e e e e e e e e 580
Review Problems 581
Operating Systems for Embedded Systems 583
Learning Objectives i e 583
Operating System Conceptsot 584
TaSKS « v vt e 587
Multitasking and Schedulers. i i 588
Inter-Task Coordination: Semaphores, 592
Inter-Task Coordination and Communication: Messaging 593
OS SeIVICES . .ttt 594
Embedded Systems Operating System for the Microchip PIC24 pC 596
ESOS OVervieWo e e 597
USer Tasks . . .o v it e e e 598
Your First ESOS Programot 602
ESOS Communication Services, 604
ESOS Timer Serviceso vttt e 608
ESOS Semaphore Services 611
ESOS Messaging Services.ot 615
ESOS User Flagso e 619
ESOS Child Tasks.ot 621
ESOS Interrupt Servicesot 624
Design: Adding an ESOS Service for 12C, 628
I12C Operations Under ESOS.t e 629
I12C Transactions Under ESOS.ot 632
Application Using the ESOS I2C Service and Semaphores 636
Application Using the ESOS I2C Service and Messaging........... 638
SUMMAIY o ottt e e e e e e 641

Review Problems e 642

XV

XVi

Table of Contents

PART IV
APPENDIXES & - v ot et v te e e snnsesnsnsncnnsnssnensnsnnnns 643
Appendix A PIC24 Architecture and Instruction Set Summary 645
Appendix B Circuits 001ttt e e 653
Voltage, Current, and Resistance, 653
ONM'S LaW . . oot 654
RESIStOrs iN Series. . ..o e 655
Resistorsin Parallel 656
Polarization 657
DIOdesS. . oo e e 657
CapaCitors . .ot e 658
Appendix C Problem Solutions i, 661
Appendix D Referencesc.iiiiiiiiiiinnnnnrnnnnnnnns 689

INTRODUCTION

duction to microprocessors (uPs) and microcontrollers (uCs) for the student or hobbyist.

This book and its accompanying website—www.reesemicro.com—are intended as an intro-
The book structure is as follows:

= Chapter 1: Review of digital logic concepts.

= Chapter 2: Computer architecture fundamentals.

= Chapters 3 through 6: Coverage of assembly language programming in a C language
context using the PIC24 family.

= Chapter 7: Advanced assembly language programming structured around computer
arithmetic topics.

= Chapters 8 through 12: Fundamental microcontroller interfacing topics such as parallel
10, asynchronous serial 10, synchronous serial IO (I2C and SPI), interrupt-driven IO,
timers, analog-to-digital conversion, and digital-to-analog conversion.

= Chapter 13: Some advanced interfacing topics such as DMA, the ECAN standard, and
slave/multi-master 12C operations.

= Chapter 14: An advanced chapter that covers the basics of real-time operating systems
using a cooperative multitasking OS written by the authors. Topics include tasks, schedulers,
scheduling algorithms, task synchronization and communication, semaphores, mailboxes,
and queues.

= Chapter 15: Advanced techniques and examples for use in a senior capstone design course.
This chapter is available online only at www.reesemicro.com.

Xvii

http://www.reesemicro.com
http://www.reesemicro.com

Xviii Introduction

Appendix A: A compact summary of the PIC24E/dsPIC33E instruction set.

Appendix B: A hobbyist-level introduction to basic circuits. It covers the basic components
(resistors, capacitors, and diodes) used in this book’s schematics.

Appendix C: Solutions to odd-numbered end-of-chapter problems.

Appendix D: References.

This Book’s Development

At Mississippi State University, majors in Electrical Engineering (EE), Computer Engineering (CPE),
Computer Science (CS), and Software Engineering (SE) take our first course in microprocessors.
Previous to Spring 2002, this course emphasized X86 assembly language programming with the lab
experience being 100 percent assembly language based and containing no hardware component.
We found that students entering our senior design course, which has the expectation of something
“real” being built, were unprepared for doing prototyping activities or for incorporating a micro-
controller component into their designs. We did offer a course in microcontrollers, but it was an
elective senior-level course and many students had not taken that course previous to senior design.
In Spring 2002, the Computer Engineering Steering Committee reexamined our goals for the first
course in microprocessors, and the approach for this book’s predecessor (From Assembly Language
to C Using the PIC18Fxx2) was developed. From Fall 2003 through Spring 2004, we used the
Microchip PIC16 family, and then used the PIC18 family from Summer 2004 through Spring 2008.
In late Fall 2007, the authors reexamined the course once again and decided to switch to the PIC24
family because of its rich instruction set architecture, 16-bit organization, and advanced on-chip
peripherals. In 2013, significant advances in the field prompted the second edition, which focuses
on the redesigned and improved PIC24E/dsPIC33E family of PIC24/dsPIC33 microprocessors.

Using This Book in an Academic Environment

This book is intended for use as a first course in microcontrollers/microprocessors (uC/uP) using
the PIC24 family, with prerequisites of basic digital design and exposure to either C or C++ pro-
gramming. The book begins with simple microprocessor architecture concepts, moves to assembly
language programming in a C language context, and then covers fundamental hardware interfac-
ing topics such as parallel 10, asynchronous serial 10, synchronous serial I/O (I2C and SPI), interrupt-
driven IO, timers, analog-to-digital conversion, and digital-to-analog conversion. Programming
topics are discussed using both assembly language and C, while hardware interfacing examples use
C to keep code complexity low and improve clarity. The assembly language programming chapters
emphasize the linkage between C language constructs and their assembly language equivalent so
that students clearly understand the impact of C coding choices in terms of execution time and
memory requirements. A textbook with an assembly-only focus creates students who are experts only
in assembly language programming, with no understanding of high-level language programming

Using This Book in an Academic Environment Xix

techniques and limited hardware exposure. Most embedded software is written in C for portability
and complexity reasons, which argues favorably for reduced emphasis on assembly language and
increased emphasis on C. Embedded system hardware complexity is steadily increasing, which
means a first course in pC/puP that reduces assembly language coverage (but does not eliminate it)
in favor of hands-on experience with fundamental interfacing allows students to begin at a higher
level in an advanced course in embedded systems, the approach chosen for this textbook.

Hardware interface topics included in this book cover the fundamentals (parallel IO, serial IO,
interrupts, timers, analog-to-digital conversion, digital-to-analog conversion) using devices that do
not require extensive circuits knowledge because of the lack of a circuits course prerequisite. The
microcontroller interfacing topics presented in this textbook are sufficient for providing a skill set
that is extremely useful to a student in a senior design capstone course or in an advanced embed-
ded system course.

Thus, a principal motivation for this book is that microcontroller knowledge has become essential
for successful completion of senior capstone design courses. These capstone courses are receiving
increased emphasis under ABET 2000 guidelines. This places increased pressure on Computer
Engineering and Electrical Engineering programs to include significant exposure to embedded sys-
tems topics as early in the curriculum as possible. A second motivation for this book is that the
ACM/IEEE Computer Engineering model curriculum recommends 17 hours of embedded system
topics as part of the Computer Engineering curriculum core, which is easily satisfied by a course
containing the topics in this book. A third motivating factor is the increased pressure on colleges and
universities to reduce hours in engineering curriculums; this book shows how a single course can
replace separate courses in assembly language programming and basic microprocessor interfacing.

The course sequence used at Mississippi State University that this book fits into is as follows:

= Basic digital design (Boolean algebra and combinational and sequential logic), which is
required by EE, CPE, CS, and SE majors.

= Introduction to microprocessors (this book), which is required for EE, CPE, CS, and SE
majors.

= Computer architecture as represented by the topic coverage of the Hennessy and Patterson
textbook, Computer Organization & Design: The Hardware/Software Interface. This includes
reinforcement of the assembly language programming taught in the microprocessor course
via a general-purpose instruction set architecture (e.g., the MIPS), along with coverage of
traditional high-performance computer architecture topics (pipelined CPU design, cache
strategies, and parallel bus I/O). Required for CPE, CS, and SE majors.

= Advanced embedded systems covering topics such as real-time operating systems, Internet
appliances, and advanced interfaces such as USB, CAN, Ethernet, and FireWire. Required
for CPE majors.

XX Introduction

Chapter 1 provides a broad review of digital logic fundamentals. Chapters 2 through 6 and 8 through
13 cover the core topics of assembly language programming and microcontroller interfacing.
Chapters 7 and 14 have optional topics on advanced assembly language programming and the
basics of real-time operating systems, which can be used to supplement the core material. The
accompanying website provides a sequence of 11 laboratory experiments that comprise an off-the-
shelf lab experience: one experiment on fundamental computer architecture topics, four experiments
on PIC24 assembly language, and six hardware experiments. In addition, the website provides
Chapter 15 of the textbook in an online form; this chapter demonstrates a set of techniques and
projects that integrate and supplement material from the previous chapters.

The hardware labs cover all major subsystems on the PIC24 uC: A/D, timers, asynchronous serial
interface, SPI, and the I2C interface. The hardware experiments are based on a breadboard/parts kit
approach where the students incrementally build a PIC24 system that includes a serial EEPROM, an
external 8-bit DAC, and an asynchronous serial port via a USB-to-serial cable. A breadboard/parts
kit approach is used instead of a preassembled printed circuit board (PCB) for several important
reasons:

= When handed a preassembled PCB, students tend to view it as a monolithic element.
A breadboard/parts kit approach forces students to view each part individually and read
datasheets to understand how parts connect to each other.

= Hardware debugging and prototyping skills are developed during the painful process
of bringing the system to life. These hard-won lessons prove useful later when students
must do the same thing in a senior design context. This also provides students with the
confidence that, having done it one time, they can do it again—this time outside of a
fixed laboratory environment with guided instruction.

= A breadboard/parts kit approach gives the ultimate flexibility to modify experiments
from semester to semester by simply changing a part or two; also, when the inevitable
part failures occur, individual components are easily replaced.

In using this laboratory approach at Mississippi State University, the authors have seen a “Culture
of Competence” develop in regard to microcontrollers and prototyping in general. All senior design
projects now routinely include a microcontroller component (not necessarily Microchip-based).
Students concentrate their efforts on design definition, development, and refinement instead of
spending most of their time climbing the learning curve on prototyping and microcontroller usage.

There are more topics in this book than can be covered in a 16-week semester. In our introductory
microprocessor course, we cover Chapters 1 through 6 for the assembly language coverage (about
6 weeks) and selected topics from Chapters 8 through 12 for the interfacing component. A course
with more emphasis on assembly language may include Chapter 7 and fewer interfacing topics.

Final Thoughts XXi

Our follow-on embedded systems course uses Chapters 8 through 14, with an emphasis on writ-
ing applications using the embedded operating system approach described in Chapter 14 and a
more in-depth coverage of all interfacing topics. A first course in microcontrollers that contains no
assembly language component may want to assign Chapters 1 through 7 as background reading
and use Chapters 8 through 14 as the primary course material.

This book’s C examples on hardware interfacing strive for code clarity first and optimization sec-
ond. A prefix naming convention (u8_, u16_, i32_, pus_, and so on) is used for all variables, and a
robust set of macros and library functions have been developed to make access to the on-chip
resources easier for those encountering microcontrollers for the first time. The library functions
emphasize run-time error trapping and reporting as a way of shedding more light on malfunction-
ing applications. Please check the www.reesemicro.com website for updates to the library functions.

For the Hobbyist

This book assumes very little background, and thus is appropriate for readers with widely varying
experience levels. First, read Chapter 8 and visit the companion website at www.reesemicro.com to
build and install the hardware and software PIC24 development environment. Next, peruse the
example programs at this website and find the ones that interest you. Then, read the chapter that
is referenced by the experiment for the necessary background. This textbook includes numerous
examples complete with schematics and working code to operate a number of useful peripherals,
including temperature sensors, LCD displays, and RC servo control, providing a good starting point
for your designs.

Final Thoughts

We hope readers have as much fun exploring the world of pCs/pPs and the PIC24 family as the
authors had in creating this text. Because we know that pC/uP development does not sit still, let us
all look forward to new learning experiences beyond this text.

Bryan A. Jones, Bob Reese, and J. W. Bruce
Mississippi State University
Starkville, Mississippi

http://www.reesemicro.com
http://www.reesemicro.com

This page intentionally left blank

PART |

DiGITAL LoGic
"REVIEW AND
COMPUTER
ARCHITECTURE
FUNDAMENTALS

CHAPTER 1
Number System and Digital LogicReview 3

CHAPTER 2
The Stored Program Machine 33

This page intentionally left blank

CHAPTER 1

NUMBER SYSTEM
AND DiGIiTAL
Locic REVIEwW

gates, combinational building blocks, sequential storage elements, and sequential building

This chapter reviews number systems, Boolean algebra, logic gates, combinational logic

blocks.

Learning Objectives
After reading this chapter, you will be able to:

Create a binary encoding for object classification.

Convert unsigned decimal numbers to binary and hex representations and vice versa.
Perform addition and subtraction on numbers in binary and hex representations.
Identify NOT, OR, AND, NOR, NAND, and XOR logic functions and their symbols.
Evaluate simple Boolean functions.

Describe the operation of CMOS P and N transistors.

Identify the CMOS transistor-level implementations of simple logic gates.

Compute clock period, frequency, and duty cycle given appropriate parameters.
Identify common combinational building blocks.

Identify common sequential building blocks.

Translate a character string into ASCII encoded data, and vice versa.

4 Chapter 1 ®m Number System and Digital Logic Review

Binary number system representation and arithmetic is fundamental to all computer system
operations. Basic logic gates, CMOS (Complementary Metal Oxide Semiconductor) transistor
operation, and combinational/sequential building block knowledge will help your comprehension
of the diagrams found in datasheets that describe microprocessor subsystem functionality. A solid
understanding of these subjects ensures better understanding of the microprocessor topics that
follow in later chapters.

Using Binary Data

Binary logic, or digital logic, is the basis for all computer systems built today. Binary means two,
and many concepts can be represented by two values: true/false, hot/cold, on/off, 1/0, to name a
few. A single binary datum whose value is 1 or 0 is referred to as a bit. Groups of bits are used to
represent concepts that have more than two values. For example, to represent the concepts
hot/warm/cool/cold, two or more bits can be used as shown in Table 1.1.

Table 1.1: Digital Encoding Examples

Value Encoding A Encoding B Encoding C
Cold 00 00 0001
Cool 01 10 0010
Warm 10 11 0100
Hot 11 01 1000

To encode n objects, the minimum number of bits required is k = ceil(log,), where ceil is the
ceiling function that takes the nearest integer greater than or equal to log, n. For the four values
in Table 1.1, the minimum number of bits required is ceil(log, (4)) = 2. Both encoding A and
encoding B use the minimum number of bits, but differ in how codes are assigned to the values.
Encoding B uses a special encoding scheme known as Gray code, in which adjacent table entries
only differ by at most one bit position. Encoding C uses more than the minimum number of
bits; this encoding scheme is known as one-hot encoding, as each code only has a single bit that
is a 1 value.

Encoding A uses binary counting order, which means that the code progresses in numerical count-
ing order if the code is interpreted as a binary number (base 2). In an unsigned binary number,
each bit is weighted by a power of two. The rightmost bit, or least significant bit (LSb), has a weight
of 2°, with each successive bit weight increasing by a power of two as you move from right to left.
The leftmost bit, the most significant bit (MSb), has a weight of 2"~' for an n-bit binary number.

Using Binary Data 5

A lowercase “b” is purposefully used in the LSb and MSb acronyms since the reference is to a single
bit; the use of an uppercase “B” in LSB and MSB acronyms is discussed in Chapter 3.

The formal term for a number’s base is radix. If r is the radix, then a binary number has r = 2, a
decimal number has r = 10, and a hexadecimal number has r = 16. In general, each digit of
a number of radix r can take on the values 0 through r — 1. The least significant digit (LSD) has a
weight of r°, with each successive digit increasing by a power of r as you move from right to left.
The leftmost digit, the most significant digit (MSD), has weight of 7", where 7 is the number of
digits in the number. For hexadecimal (hex) numbers, letters A through F represent the digits 10
through 15, respectively.

Decimal, binary, and hexadecimal numbers are used extensively in this book. If the base of the
number cannot be determined by context, a 0x is used as the radix identifier for hex numbers
(i.e., 0x3A) and Ob for binary numbers (i.e., 0b01101000). No radix identifier is used for decimal
numbers. Table 1.2 lists the binary and hex values for the decimal values 0 through 15. Note that
4 bits are required to encode these 16 values since 2* = 16. The binary and hex values in Table 1.2
are given without radix identifiers. The * symbol in Table 1.2 is a multiplication operation; other
symbols used in this book for multiplication are X (a X b) and - (a - b) with the usage made clear
by the context.

Table 1.2: Binary Encoding for Decimal Numbers 0-15

Decimal Binary Binary to Decimal Hex Hex to Decimal
0 0000 0%2° + 02 + 0*2' + 0*2° 0 0*16°
1 0001 0%2° + 0*2° + 02" + 1*2° 1 1*16°
2 0010 0%2° + 0%2? + 1*2' + 0*2° 2 2*16°
3 0011 0%2° + 0%22 + 1*2' + 1*2° 3 3*16°
4 0100 0%2° +1%*2* + 0*2' + 0*2° 4 4*16°
5 0101 0%2° +1%2* + 0%2' + 1*2° 5 5*16°
6 0110 0%2° +1%2° + 1*2' + 0*2° 6 6*16°
7 0111 0%22 + 1%22 + 1%2' + 1*2° 7 7*16°
8 1000 1%2° + 0%22 + 0*2" + 0*2° 8 8*16°
9 1001 1%2° + 0%22 + 0%2"' + 1*2° 9 9*16°
10 1010 1%2° + 0%22 + 1%2"' + 0%2° A 10*16°
" 1011 1%22 + 0%22 + 172" + 1%2° B 11*16°

continues...

6 Chapter 1 ®m Number System and Digital Logic Review

Table 1.2: Binary Encoding for Decimal Numbers 0-15 (continued)

Decimal Binary Binary to Decimal Hex Hex to Decimal
12 1100 1%22 +1%22 + 0%2' + 0*2° C 12*16°
13 1101 122 +1%22+0%2' + 1%2° D 13*16°
14 1110 1%2° + 1%22 + 172" + 0%2° E 14*16°
15 "M 122+ 1%22+ 172" + 1%2° F 15*16°

A binary number of n bits can represent the unsigned decimal values of 0 to 2V¥-'. A common
size for binary data is a group of eight bits, referred to as a byte. A byte can represent the unsigned
decimal range of 0 to 255 (0x00 to OxFF in hex). Groups of bytes are often used to represent larg-
er numbers; this topic is explored in Chapter 5. Common powers of two are given in Table 1.3.
Powers of two that are evenly divisible by 2" can be referred to by the suffixes Ki (kibi, kilobina-
ry, 2'°), Mi (mebi, megabinary, 2*°), and Gi (gibi, gigabinary, 2*). The notation of Ki, Mi, and Gi
is adopted from IEEE Standard 1541-2002, which was created to avoid confusion with the suffixes
k (kilo, 10°), M (mega, 10°), and G (giga, 10°). Thus, the value of 4,096 can be written in the abbre-
viated form of 4 Ki (4 ¥ 1 Ki = 22* 2! = 22= 4096 = 4.096 k). However, be aware that the ter-
minology of this IEEE standard is not in widespread use yet. The terms kBytes and MBytes are
commonly used when referring to memory sizes and these mean the same as KiBytes and MiBytes.

Table 1.3: Common Powers of Two

Power Decimal Hex Power Decimal Hex

2 1 0x1 (Ki), 2" 1024 0x400

2’ 2 0x2 2" 2048 0x800

2? 4 0x4 2" 4096 0x1000

2} 8 0x8 2" 8192 0x2000

2¢ 16 0x10 2" 16384 0x4000

2° 32 0x20 2B 32768 0x8000

2L 64 0x40 2 65536 0x10000

2’ 128 0x80 (Mi), 2% 1,048,576 0x100000

28 256 0x100 (Gi),2* 1,073,741,824 0x40000000
2° 512 0x200 2% 4,294,967,296 0x100000000

Unsigned Number Conversion 7

Sample Question: What is the largest unsigned decimal number that can be represented using a binary number
with 16 bits?

Answer: From Table 1.3, you can see that 2'° = 65,536, so 2'* — 1 = 65,535.

Unsigned Number Conversion

To convert a number of any radix to decimal, simply multiply each digit by its corresponding
weight and sum the result. The example that follows shows binary-to-decimal and hex-to-decimal
conversion:

(binary to decimal) 0b0101 0010 = 0*27 + 1*2° + 0%2° + 1*2* + 0*2° + 0*2* + 1*2' + 0*2°
=0+64+0+16+0+0+2+0=282
(hex to decimal) 0x52 = 5%16' + 2X16° =80 + 2 = 82

To convert a decimal number to a different radix, perform successive division of the decimal
number by the radix; at each step the remainder is a digit in the converted number, and the quo-
tient is the starting value for the next step. The successive division ends when the quotient
becomes less than the radix. The digits of the converted number are determined rightmost to
leftmost, with the last quotient being the leftmost digit of the converted number. The following
sample problem illustrates the successive division algorithm.

Sample Question: Convert 435 to hex.

Answer:
Step 1:435/16 = 27, remainder = 3 (rightmost digit).

Step 2: 27/16 = 1, remainder = 11 = 0xB (next digit).
Step 3: 1 < 16, so leftmost digit = 1.

Final answer: 435 = 0x1B3

To check your work, perform the reverse conversion:

0x1B3 =1*16"+ 11*16" + 3*16° = 1*256 + 11*16 + 3*1 =256 + 176 + 3 = 435

Hex to Binary, Binary to Hex

Hex can be viewed as a shorthand notation for binary. A quick method for performing binary-to-hex
conversion is to convert each group of four binary digits (starting with the rightmost digit) to one

8 Chapter 1 ®m Number System and Digital Logic Review

hex digit. If the last (leftmost) group of binary digits does not contain four bits, then pad with lead-
ing zeros to reach four digits. Converting hex to binary is the reverse procedure of replacing each
hex digit with four binary digits. The easiest way to perform decimal-to-binary conversion is to first
convert to hex then convert the hex number to binary. This involves fewer division operations and
hence fewer chances for careless error. Similarly, binary-to-decimal conversion is best done by con-
verting the binary number to a hex value, and then converting the hex number to decimal. The fol-
lowing examples illustrate binary-to-hex, hex-to-binary, and decimal-to-binary conversion.
Sample Question: Convert 0b010110 to hex.

Answer: Starting with the rightmost digit, form groups of four: 01 0110. The leftmost group has only two digits, so
pad this group with zeros as: 0001 0110. Now convert each group of four digits to hex digits (see Table 1.2):

Ob 0001 0110 = 0x16.

Sample Question: Convert 0xF3C to binary.
Answer: Replace each hex digit with its binary equivalent:

0xF3C=0b 1111 0011 1100

Sample Question: Convert 243 to binary.

Answer: First, convert 243 to hex:

Step 1:243/16 = 15, remainder 3 (rightmost digit).

Step 2: 15 < 16, so leftmost digit is OxF (15). Hex result is OxF3.
243 = 0xF3 = 0b 1111 0011 (final answer, in binary)

Check: 0xF3 = 1516 + 3 = 240 + 3 = 243

Binary and Hex Arithmetic

Addition, subtraction, and shift operations are implemented in some form in most digital systems.
The fundamentals of these operations are reviewed in this section and revisited in Chapters 3
and 4 when discussing basic computer operations.

Binary and Hex Addition

Adding two numbers, i + j, in any base is accomplished by starting with the rightmost digit and
adding each digit of i to each digit of j, moving right to left. If the digit sum is less than the radix,

Unsigned Number Conversion 9

the result digit is the sum and a carry of 0 is used in the next digit addition. If the sum of the digits
is greater than or equal to the radix, a carry of 1 is added to the next digit sum, and the result digit is
computed by subtracting r from the digit sum. For binary addition, these rules can be stated as:

m 0+0=0,carry=0
m 0+1=1,carry=0
B 1+0=1,carry=0
B 1+1=0,carry=1

Figure 1.1 shows a digit-by-digit addition for the numbers 0b110 + 0b011. Note that the result
is 0b001 with a carry-out of the most significant digit of 1. A carry-out of the most significant
digit indicates that the sum produced unsigned overflow; the result could not fit in the number
of available digits. A carry-out of the most significant digit is an unsigned error indicator if the
numbers represent unsigned integers. In this case, the sum 0b110 + 0b011 is 6 + 3 with the cor-
rect answer being 9. However, the largest unsigned integer that can be specified in three bits is
2°—1, or 7. The value of 9 is too large to be represented in three bits, and thus the result is incor-
rect from an arithmetic perspective, but is correct by the rules of binary addition. This is known
as the limited precision problem; only increasing the number of bits used for binary encoding can
increase the number range. You'll study this problem and the consequences of using more or
fewer bits for number representation in later chapters.

=] "%0 %

: : ? \ Carry

0
T Figure 1.1
o o 1 Binary addition example

+

Sample Question: Compute 0x1A3 + 0x36F.

Answer: A digit-by-digit addition for the operation 0x1A3 + 0x36F is as follows. The rightmost result digit is formed
by adding:

0x3 (3) + OxF (15) = 18

Note the digit sum is greater than 16, so a carry of 1 is produced and the rightmost result digit is computed by sub-
tracting the radix, or:

18-16=2=0x2
The middle digit sum is then:
0xA (10) + 0x6 (6) + 1 (carry) =17

