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INTRODUCTION

duction to microprocessors (uPs) and microcontrollers (uCs) for the student or hobbyist.

This book and its accompanying website—www.reesemicro.com—are intended as an intro-
The book structure is as follows:

= Chapter 1: Review of digital logic concepts.

= Chapter 2: Computer architecture fundamentals.

= Chapters 3 through 6: Coverage of assembly language programming in a C language
context using the PIC24 family.

= Chapter 7: Advanced assembly language programming structured around computer
arithmetic topics.

= Chapters 8 through 12: Fundamental microcontroller interfacing topics such as parallel
10, asynchronous serial 10, synchronous serial IO (I2C and SPI), interrupt-driven IO,
timers, analog-to-digital conversion, and digital-to-analog conversion.

= Chapter 13: Some advanced interfacing topics such as DMA, the ECAN standard, and
slave/multi-master 12C operations.

= Chapter 14: An advanced chapter that covers the basics of real-time operating systems
using a cooperative multitasking OS written by the authors. Topics include tasks, schedulers,
scheduling algorithms, task synchronization and communication, semaphores, mailboxes,
and queues.

= Chapter 15: Advanced techniques and examples for use in a senior capstone design course.
This chapter is available online only at www.reesemicro.com.

Xvii
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Appendix A: A compact summary of the PIC24E/dsPIC33E instruction set.

Appendix B: A hobbyist-level introduction to basic circuits. It covers the basic components
(resistors, capacitors, and diodes) used in this book’s schematics.

Appendix C: Solutions to odd-numbered end-of-chapter problems.

Appendix D: References.

This Book’s Development

At Mississippi State University, majors in Electrical Engineering (EE), Computer Engineering (CPE),
Computer Science (CS), and Software Engineering (SE) take our first course in microprocessors.
Previous to Spring 2002, this course emphasized X86 assembly language programming with the lab
experience being 100 percent assembly language based and containing no hardware component.
We found that students entering our senior design course, which has the expectation of something
“real” being built, were unprepared for doing prototyping activities or for incorporating a micro-
controller component into their designs. We did offer a course in microcontrollers, but it was an
elective senior-level course and many students had not taken that course previous to senior design.
In Spring 2002, the Computer Engineering Steering Committee reexamined our goals for the first
course in microprocessors, and the approach for this book’s predecessor (From Assembly Language
to C Using the PIC18Fxx2) was developed. From Fall 2003 through Spring 2004, we used the
Microchip PIC16 family, and then used the PIC18 family from Summer 2004 through Spring 2008.
In late Fall 2007, the authors reexamined the course once again and decided to switch to the PIC24
family because of its rich instruction set architecture, 16-bit organization, and advanced on-chip
peripherals. In 2013, significant advances in the field prompted the second edition, which focuses
on the redesigned and improved PIC24E/dsPIC33E family of PIC24/dsPIC33 microprocessors.

Using This Book in an Academic Environment

This book is intended for use as a first course in microcontrollers/microprocessors (uC/uP) using
the PIC24 family, with prerequisites of basic digital design and exposure to either C or C++ pro-
gramming. The book begins with simple microprocessor architecture concepts, moves to assembly
language programming in a C language context, and then covers fundamental hardware interfac-
ing topics such as parallel 10, asynchronous serial 10, synchronous serial I/O (I2C and SPI), interrupt-
driven IO, timers, analog-to-digital conversion, and digital-to-analog conversion. Programming
topics are discussed using both assembly language and C, while hardware interfacing examples use
C to keep code complexity low and improve clarity. The assembly language programming chapters
emphasize the linkage between C language constructs and their assembly language equivalent so
that students clearly understand the impact of C coding choices in terms of execution time and
memory requirements. A textbook with an assembly-only focus creates students who are experts only
in assembly language programming, with no understanding of high-level language programming



Using This Book in an Academic Environment Xix

techniques and limited hardware exposure. Most embedded software is written in C for portability
and complexity reasons, which argues favorably for reduced emphasis on assembly language and
increased emphasis on C. Embedded system hardware complexity is steadily increasing, which
means a first course in pC/puP that reduces assembly language coverage (but does not eliminate it)
in favor of hands-on experience with fundamental interfacing allows students to begin at a higher
level in an advanced course in embedded systems, the approach chosen for this textbook.

Hardware interface topics included in this book cover the fundamentals (parallel IO, serial IO,
interrupts, timers, analog-to-digital conversion, digital-to-analog conversion) using devices that do
not require extensive circuits knowledge because of the lack of a circuits course prerequisite. The
microcontroller interfacing topics presented in this textbook are sufficient for providing a skill set
that is extremely useful to a student in a senior design capstone course or in an advanced embed-
ded system course.

Thus, a principal motivation for this book is that microcontroller knowledge has become essential
for successful completion of senior capstone design courses. These capstone courses are receiving
increased emphasis under ABET 2000 guidelines. This places increased pressure on Computer
Engineering and Electrical Engineering programs to include significant exposure to embedded sys-
tems topics as early in the curriculum as possible. A second motivation for this book is that the
ACM/IEEE Computer Engineering model curriculum recommends 17 hours of embedded system
topics as part of the Computer Engineering curriculum core, which is easily satisfied by a course
containing the topics in this book. A third motivating factor is the increased pressure on colleges and
universities to reduce hours in engineering curriculums; this book shows how a single course can
replace separate courses in assembly language programming and basic microprocessor interfacing.

The course sequence used at Mississippi State University that this book fits into is as follows:

= Basic digital design (Boolean algebra and combinational and sequential logic), which is
required by EE, CPE, CS, and SE majors.

= Introduction to microprocessors (this book), which is required for EE, CPE, CS, and SE
majors.

= Computer architecture as represented by the topic coverage of the Hennessy and Patterson
textbook, Computer Organization & Design: The Hardware/Software Interface. This includes
reinforcement of the assembly language programming taught in the microprocessor course
via a general-purpose instruction set architecture (e.g., the MIPS), along with coverage of
traditional high-performance computer architecture topics (pipelined CPU design, cache
strategies, and parallel bus I/O). Required for CPE, CS, and SE majors.

= Advanced embedded systems covering topics such as real-time operating systems, Internet
appliances, and advanced interfaces such as USB, CAN, Ethernet, and FireWire. Required
for CPE majors.
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Chapter 1 provides a broad review of digital logic fundamentals. Chapters 2 through 6 and 8 through
13 cover the core topics of assembly language programming and microcontroller interfacing.
Chapters 7 and 14 have optional topics on advanced assembly language programming and the
basics of real-time operating systems, which can be used to supplement the core material. The
accompanying website provides a sequence of 11 laboratory experiments that comprise an off-the-
shelf lab experience: one experiment on fundamental computer architecture topics, four experiments
on PIC24 assembly language, and six hardware experiments. In addition, the website provides
Chapter 15 of the textbook in an online form; this chapter demonstrates a set of techniques and
projects that integrate and supplement material from the previous chapters.

The hardware labs cover all major subsystems on the PIC24 uC: A/D, timers, asynchronous serial
interface, SPI, and the I2C interface. The hardware experiments are based on a breadboard/parts kit
approach where the students incrementally build a PIC24 system that includes a serial EEPROM, an
external 8-bit DAC, and an asynchronous serial port via a USB-to-serial cable. A breadboard/parts
kit approach is used instead of a preassembled printed circuit board (PCB) for several important
reasons:

= When handed a preassembled PCB, students tend to view it as a monolithic element.
A breadboard/parts kit approach forces students to view each part individually and read
datasheets to understand how parts connect to each other.

= Hardware debugging and prototyping skills are developed during the painful process
of bringing the system to life. These hard-won lessons prove useful later when students
must do the same thing in a senior design context. This also provides students with the
confidence that, having done it one time, they can do it again—this time outside of a
fixed laboratory environment with guided instruction.

= A breadboard/parts kit approach gives the ultimate flexibility to modify experiments
from semester to semester by simply changing a part or two; also, when the inevitable
part failures occur, individual components are easily replaced.

In using this laboratory approach at Mississippi State University, the authors have seen a “Culture
of Competence” develop in regard to microcontrollers and prototyping in general. All senior design
projects now routinely include a microcontroller component (not necessarily Microchip-based).
Students concentrate their efforts on design definition, development, and refinement instead of
spending most of their time climbing the learning curve on prototyping and microcontroller usage.

There are more topics in this book than can be covered in a 16-week semester. In our introductory
microprocessor course, we cover Chapters 1 through 6 for the assembly language coverage (about
6 weeks) and selected topics from Chapters 8 through 12 for the interfacing component. A course
with more emphasis on assembly language may include Chapter 7 and fewer interfacing topics.
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Our follow-on embedded systems course uses Chapters 8 through 14, with an emphasis on writ-
ing applications using the embedded operating system approach described in Chapter 14 and a
more in-depth coverage of all interfacing topics. A first course in microcontrollers that contains no
assembly language component may want to assign Chapters 1 through 7 as background reading
and use Chapters 8 through 14 as the primary course material.

This book’s C examples on hardware interfacing strive for code clarity first and optimization sec-
ond. A prefix naming convention (u8_, u16_, i32_, pus_, and so on) is used for all variables, and a
robust set of macros and library functions have been developed to make access to the on-chip
resources easier for those encountering microcontrollers for the first time. The library functions
emphasize run-time error trapping and reporting as a way of shedding more light on malfunction-
ing applications. Please check the www.reesemicro.com website for updates to the library functions.

For the Hobbyist

This book assumes very little background, and thus is appropriate for readers with widely varying
experience levels. First, read Chapter 8 and visit the companion website at www.reesemicro.com to
build and install the hardware and software PIC24 development environment. Next, peruse the
example programs at this website and find the ones that interest you. Then, read the chapter that
is referenced by the experiment for the necessary background. This textbook includes numerous
examples complete with schematics and working code to operate a number of useful peripherals,
including temperature sensors, LCD displays, and RC servo control, providing a good starting point
for your designs.

Final Thoughts

We hope readers have as much fun exploring the world of pCs/pPs and the PIC24 family as the
authors had in creating this text. Because we know that pC/uP development does not sit still, let us
all look forward to new learning experiences beyond this text.

Bryan A. Jones, Bob Reese, and J. W. Bruce
Mississippi State University
Starkville, Mississippi


http://www.reesemicro.com
http://www.reesemicro.com
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CHAPTER 1
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Locic REVIEwW

gates, combinational building blocks, sequential storage elements, and sequential building

This chapter reviews number systems, Boolean algebra, logic gates, combinational logic

blocks.

Learning Objectives
After reading this chapter, you will be able to:

Create a binary encoding for object classification.

Convert unsigned decimal numbers to binary and hex representations and vice versa.
Perform addition and subtraction on numbers in binary and hex representations.
Identify NOT, OR, AND, NOR, NAND, and XOR logic functions and their symbols.
Evaluate simple Boolean functions.

Describe the operation of CMOS P and N transistors.

Identify the CMOS transistor-level implementations of simple logic gates.

Compute clock period, frequency, and duty cycle given appropriate parameters.
Identify common combinational building blocks.

Identify common sequential building blocks.

Translate a character string into ASCII encoded data, and vice versa.
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Binary number system representation and arithmetic is fundamental to all computer system
operations. Basic logic gates, CMOS (Complementary Metal Oxide Semiconductor) transistor
operation, and combinational/sequential building block knowledge will help your comprehension
of the diagrams found in datasheets that describe microprocessor subsystem functionality. A solid
understanding of these subjects ensures better understanding of the microprocessor topics that
follow in later chapters.

Using Binary Data

Binary logic, or digital logic, is the basis for all computer systems built today. Binary means two,
and many concepts can be represented by two values: true/false, hot/cold, on/off, 1/0, to name a
few. A single binary datum whose value is 1 or 0 is referred to as a bit. Groups of bits are used to
represent concepts that have more than two values. For example, to represent the concepts
hot/warm/cool/cold, two or more bits can be used as shown in Table 1.1.

Table 1.1: Digital Encoding Examples

Value Encoding A Encoding B Encoding C
Cold 00 00 0001
Cool 01 10 0010
Warm 10 11 0100
Hot 11 01 1000

To encode n objects, the minimum number of bits required is k = ceil(log, ), where ceil is the
ceiling function that takes the nearest integer greater than or equal to log, n. For the four values
in Table 1.1, the minimum number of bits required is ceil(log, (4)) = 2. Both encoding A and
encoding B use the minimum number of bits, but differ in how codes are assigned to the values.
Encoding B uses a special encoding scheme known as Gray code, in which adjacent table entries
only differ by at most one bit position. Encoding C uses more than the minimum number of
bits; this encoding scheme is known as one-hot encoding, as each code only has a single bit that
is a 1 value.

Encoding A uses binary counting order, which means that the code progresses in numerical count-
ing order if the code is interpreted as a binary number (base 2). In an unsigned binary number,
each bit is weighted by a power of two. The rightmost bit, or least significant bit (LSb), has a weight
of 2°, with each successive bit weight increasing by a power of two as you move from right to left.
The leftmost bit, the most significant bit (MSb), has a weight of 2"~' for an n-bit binary number.
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A lowercase “b” is purposefully used in the LSb and MSb acronyms since the reference is to a single
bit; the use of an uppercase “B” in LSB and MSB acronyms is discussed in Chapter 3.

The formal term for a number’s base is radix. If r is the radix, then a binary number has r = 2, a
decimal number has r = 10, and a hexadecimal number has r = 16. In general, each digit of
a number of radix r can take on the values 0 through r — 1. The least significant digit (LSD) has a
weight of r°, with each successive digit increasing by a power of r as you move from right to left.
The leftmost digit, the most significant digit (MSD), has weight of 7", where 7 is the number of
digits in the number. For hexadecimal (hex) numbers, letters A through F represent the digits 10
through 15, respectively.

Decimal, binary, and hexadecimal numbers are used extensively in this book. If the base of the
number cannot be determined by context, a 0x is used as the radix identifier for hex numbers
(i.e., 0x3A) and Ob for binary numbers (i.e., 0b01101000). No radix identifier is used for decimal
numbers. Table 1.2 lists the binary and hex values for the decimal values 0 through 15. Note that
4 bits are required to encode these 16 values since 2* = 16. The binary and hex values in Table 1.2
are given without radix identifiers. The * symbol in Table 1.2 is a multiplication operation; other
symbols used in this book for multiplication are X (a X b) and - (a - b) with the usage made clear
by the context.

Table 1.2: Binary Encoding for Decimal Numbers 0-15

Decimal Binary Binary to Decimal Hex Hex to Decimal
0 0000 0%2° + 02 + 0*2' + 0*2° 0 0*16°
1 0001 0%2° + 0*2° + 02" + 1*2° 1 1*16°
2 0010 0%2° + 0%2? + 1*2' + 0*2° 2 2*16°
3 0011 0%2° + 0%22 + 1*2' + 1*2° 3 3*16°
4 0100 0%2° +1%*2* + 0*2' + 0*2° 4 4*16°
5 0101 0%2° +1%2* + 0%2' + 1*2° 5 5*16°
6 0110 0%2° +1%2° + 1*2' + 0*2° 6 6*16°
7 0111 0%22 + 1%22 + 1%2' + 1*2° 7 7*16°
8 1000 1%2° + 0%22 + 0*2" + 0*2° 8 8*16°
9 1001 1%2° + 0%22 + 0%2"' + 1*2° 9 9*16°
10 1010 1%2° + 0%22 + 1%2"' + 0%2° A 10*16°
" 1011 1%22 + 0%22 + 172" + 1%2° B 11*16°

continues...
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Table 1.2: Binary Encoding for Decimal Numbers 0-15 (continued)

Decimal Binary Binary to Decimal Hex Hex to Decimal
12 1100 1%22 +1%22 + 0%2' + 0*2° C 12*16°
13 1101 122 +1%22+0%2' + 1%2° D 13*16°
14 1110 1%2° + 1%22 + 172" + 0%2° E 14*16°
15 "M 122+ 1%22+ 172" + 1%2° F 15*16°

A binary number of n bits can represent the unsigned decimal values of 0 to 2V¥-'. A common
size for binary data is a group of eight bits, referred to as a byte. A byte can represent the unsigned
decimal range of 0 to 255 (0x00 to OxFF in hex). Groups of bytes are often used to represent larg-
er numbers; this topic is explored in Chapter 5. Common powers of two are given in Table 1.3.
Powers of two that are evenly divisible by 2" can be referred to by the suffixes Ki (kibi, kilobina-
ry, 2'°), Mi (mebi, megabinary, 2*°), and Gi (gibi, gigabinary, 2*). The notation of Ki, Mi, and Gi
is adopted from IEEE Standard 1541-2002, which was created to avoid confusion with the suffixes
k (kilo, 10°), M (mega, 10°), and G (giga, 10°). Thus, the value of 4,096 can be written in the abbre-
viated form of 4 Ki (4 ¥ 1 Ki = 22* 2! = 22= 4096 = 4.096 k). However, be aware that the ter-
minology of this IEEE standard is not in widespread use yet. The terms kBytes and MBytes are
commonly used when referring to memory sizes and these mean the same as KiBytes and MiBytes.

Table 1.3: Common Powers of Two

Power Decimal Hex Power Decimal Hex

2 1 0x1 (Ki), 2" 1024 0x400

2’ 2 0x2 2" 2048 0x800

2? 4 0x4 2" 4096 0x1000

2} 8 0x8 2" 8192 0x2000

2¢ 16 0x10 2" 16384 0x4000

2° 32 0x20 2B 32768 0x8000

2L 64 0x40 2 65536 0x10000

2’ 128 0x80 (Mi), 2% 1,048,576 0x100000

28 256 0x100 (Gi),2* 1,073,741,824 0x40000000
2° 512 0x200 2% 4,294,967,296 0x100000000
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Sample Question: What is the largest unsigned decimal number that can be represented using a binary number
with 16 bits?

Answer: From Table 1.3, you can see that 2'° = 65,536, so 2'* — 1 = 65,535.

Unsigned Number Conversion

To convert a number of any radix to decimal, simply multiply each digit by its corresponding
weight and sum the result. The example that follows shows binary-to-decimal and hex-to-decimal
conversion:

(binary to decimal) 0b0101 0010 = 0*27 + 1*2° + 0%2° + 1*2* + 0*2° + 0*2* + 1*2' + 0*2°
=0+64+0+16+0+0+2+0=282
(hex to decimal) 0x52 = 5%16' + 2X16° =80 + 2 = 82

To convert a decimal number to a different radix, perform successive division of the decimal
number by the radix; at each step the remainder is a digit in the converted number, and the quo-
tient is the starting value for the next step. The successive division ends when the quotient
becomes less than the radix. The digits of the converted number are determined rightmost to
leftmost, with the last quotient being the leftmost digit of the converted number. The following
sample problem illustrates the successive division algorithm.

Sample Question: Convert 435 to hex.

Answer:
Step 1:435/16 = 27, remainder = 3 (rightmost digit).

Step 2: 27/16 = 1, remainder = 11 = 0xB (next digit).
Step 3: 1 < 16, so leftmost digit = 1.

Final answer: 435 = 0x1B3

To check your work, perform the reverse conversion:

0x1B3 =1*16"+ 11*16" + 3*16° = 1*256 + 11*16 + 3*1 =256 + 176 + 3 = 435

Hex to Binary, Binary to Hex

Hex can be viewed as a shorthand notation for binary. A quick method for performing binary-to-hex
conversion is to convert each group of four binary digits (starting with the rightmost digit) to one



8 Chapter 1 ®m Number System and Digital Logic Review

hex digit. If the last (leftmost) group of binary digits does not contain four bits, then pad with lead-
ing zeros to reach four digits. Converting hex to binary is the reverse procedure of replacing each
hex digit with four binary digits. The easiest way to perform decimal-to-binary conversion is to first
convert to hex then convert the hex number to binary. This involves fewer division operations and
hence fewer chances for careless error. Similarly, binary-to-decimal conversion is best done by con-
verting the binary number to a hex value, and then converting the hex number to decimal. The fol-
lowing examples illustrate binary-to-hex, hex-to-binary, and decimal-to-binary conversion.
Sample Question: Convert 0b010110 to hex.

Answer: Starting with the rightmost digit, form groups of four: 01 0110. The leftmost group has only two digits, so
pad this group with zeros as: 0001 0110. Now convert each group of four digits to hex digits (see Table 1.2):

Ob 0001 0110 = 0x16.

Sample Question: Convert 0xF3C to binary.
Answer: Replace each hex digit with its binary equivalent:

0xF3C=0b 1111 0011 1100

Sample Question: Convert 243 to binary.

Answer: First, convert 243 to hex:

Step 1:243/16 = 15, remainder 3 (rightmost digit).

Step 2: 15 < 16, so leftmost digit is OxF (15). Hex result is OxF3.
243 = 0xF3 = 0b 1111 0011 (final answer, in binary)

Check: 0xF3 = 1516 + 3 = 240 + 3 = 243

Binary and Hex Arithmetic

Addition, subtraction, and shift operations are implemented in some form in most digital systems.
The fundamentals of these operations are reviewed in this section and revisited in Chapters 3
and 4 when discussing basic computer operations.

Binary and Hex Addition

Adding two numbers, i + j, in any base is accomplished by starting with the rightmost digit and
adding each digit of i to each digit of j, moving right to left. If the digit sum is less than the radix,
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the result digit is the sum and a carry of 0 is used in the next digit addition. If the sum of the digits
is greater than or equal to the radix, a carry of 1 is added to the next digit sum, and the result digit is
computed by subtracting r from the digit sum. For binary addition, these rules can be stated as:

m 0+0=0,carry=0
m 0+1=1,carry=0
B 1+0=1,carry=0
B 1+1=0,carry=1

Figure 1.1 shows a digit-by-digit addition for the numbers 0b110 + 0b011. Note that the result
is 0b001 with a carry-out of the most significant digit of 1. A carry-out of the most significant
digit indicates that the sum produced unsigned overflow; the result could not fit in the number
of available digits. A carry-out of the most significant digit is an unsigned error indicator if the
numbers represent unsigned integers. In this case, the sum 0b110 + 0b011 is 6 + 3 with the cor-
rect answer being 9. However, the largest unsigned integer that can be specified in three bits is
2°—1, or 7. The value of 9 is too large to be represented in three bits, and thus the result is incor-
rect from an arithmetic perspective, but is correct by the rules of binary addition. This is known
as the limited precision problem; only increasing the number of bits used for binary encoding can
increase the number range. You'll study this problem and the consequences of using more or
fewer bits for number representation in later chapters.
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T Figure 1.1
o o 1 Binary addition example
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Sample Question: Compute 0x1A3 + 0x36F.

Answer: A digit-by-digit addition for the operation 0x1A3 + 0x36F is as follows. The rightmost result digit is formed
by adding:

0x3 (3) + OxF (15) = 18

Note the digit sum is greater than 16, so a carry of 1 is produced and the rightmost result digit is computed by sub-
tracting the radix, or:

18-16=2=0x2
The middle digit sum is then:
0xA (10) + 0x6 (6) + 1 (carry) =17





